Climate change impacts
Global warming is the result of increasing atmospheric carbon dioxide concentrations which is caused primarily by the combustion of fossil energy sources such as petroleum, coal, and natural gas, and to an unknown extent by destruction of forests, increased methane, volcanic activity and cement production. Such massive alteration of the global carbon cycle has only been possible because of the availability and deployment of advanced technologies, ranging in application from fossil fuel exploration, extraction, distribution, refining, and combustion in power plants and automobile engines and advanced farming practices. Livestock contributes to climate change both through the production of greenhouse gases and through destruction of carbon sinks such as rain-forests. According to the 2006 United Nations/FAO report, 18% of all greenhouse gas emissions found in the atmosphere are due to livestock. The raising of livestock and the land needed to feed them has resulted in the destruction of millions of acres of rainforest and as global demand for meat rises, so too will the demand for land. Ninety-one percent of all rainforest land deforested since 1970 is now used for livestock. Potential negative environmental impacts caused by increasing atmospheric carbon dioxide concentrations are rising global air temperatures, altered hydrogeological cycles resulting in more frequent and severe droughts, storms, and floods, as well as sea level rise and ecosystem disruption.
Acid Depositionedit
The fossils that are burned by humans for energy usually come back to them in the form of acid rain. Acid rain is a form of precipitation which has high sulfuric and nitric acids which can occur in the form of a fog or snow. Acid rain has numerous ecological impacts on streams, lakes, wetlands and other aquatic environments. It damages forests, robs the soil of its essential nutrients, releases aluminium to the soil, which makes it very hard for trees to absorb water.
Researchers have discovered that kelp, eelgrass and other vegetation can effectively absorb carbon dioxide and hence reducing ocean acidity. Scientists, therefore, say that growing these plants could help in mitigating the damaging effects of acidification on marine life.
Ozone depletion on Vegetationedit
Ozone depletion damages plants all over the world and this includes both the plants in the natural ecosystems and the agricultural crops. It damages vegetation by entering through the leaf’s stomata and burning that plant tissue during the respiration process. Ground-level ozone is known for causing more plant damage than any other all the combination of all other air pollutants.
Reduced ozone levels due to ozone depletion indicate that there is less protection from sun rays and more exposure to UVB radiation at the surface of the Earth. UVB radiation affects the developmental and physiological processes of plants. These effects include changes in plant form, the timing of developmental phases, distribution of nutrients within the plant and secondary metabolism.
Disruption of the nitrogen cycleedit
Of particular concern is N2O, which has an average atmospheric lifetime of 114–120 years, and is 300 times more effective than CO2 as a greenhouse gas. NOx produced by industrial processes, automobiles and agricultural fertilization and NH3 emitted from soils (i.e., as an additional byproduct of nitrification) and livestock operations are transported to downwind ecosystems, influencing N cycling and nutrient losses. Six major effects of NOx and NH3 emissions have been identified:
- decreased atmospheric visibility due to ammonium aerosols (fine particulate matter PM)
- elevated ozone concentrations
- ozone and PM affects human health (e.g. respiratory diseases, cancer)
- increases in radiative forcing and global warming
- decreased agricultural productivity due to ozone deposition
- ecosystem acidification and eutrophication.
Comments
Post a Comment